GAN 첫걸음

한빛미디어에서 제공받는 책으로 해당 리뷰를 작성하였습니다.

책표지!

1

OOO 첫걸음 책은 가볍게 들고 다니면서 읽어보기 좋다. 실습을 진행하지 않더라도, 얇은 책의 절반을 ‘기초’나 ‘개념’에 투자하기 때문에 대학원에서 머신러닝 공부할 때 많은 도움을 받았다. 이 책을 한빛미디어에서 받고, 내심 기다하는 바가 있었다. GAN에 대해서 가볍게 진행하겠지라고 생각했고, 당연히 TF를 기반으로 쉬운 예제를 돌릴 것으로 예상했다. 예상은 빗나갔다. 책 표지에 작게 적혀있는데, 못보고 지나쳤다.

2

이 책은 TF를 사용하지 않는다. 해당 교재는 파이토치(PyTorch)를 사용한다. 현재 학계에서 출판되는 논문의 경우 TF가 아니라 파이토치를 사용하는 경우가 많아서, 논문을 읽고 구현할 때 TF와 파이토치 두 가지를 모두 사용할 수 있어야 한다. 그런데 대부분의 딥러닝 교재가 당연하게도 TF를 중심으로 진행되기 때문에 PyTorch를 배우기 쉽지 않다. 교재가 흔하지 않고, 출판된 교재 자체가 기본적인 내용을 다루고 있기 때문에 아쉬운 점이 많다.

이 교재는 PyTorch를 Colab에서 기초부터 진행하고 있기 때문에 손쉬게 진행할 수 있다. 실습 환경 구성이 매우 쉽기 때문에 여타의 교재에 비해서 손쉽게 시작할 수 있다. 나도 4월에 이 책으로 스터디를 한 번 진행해 볼까 싶을 정도로 쉽게 잘 만들어진 교재다.

오홋!

3

GAN에 대해서 접근 방식이 코드를 위주로 진행하고, 수식을 소개하는 부분이 논문 수준(즉, 중간 계산을 생각보다 많이 건너뜀)이기 때문에 GAN을 상세히 배우기 보다는 파이토치를 사용해서 가볍게 접근하는 분들에게 유용하다. 딥러닝의 경우 대부분의 연구자들이 분야별로 자신만의 영역을 구축하는 경향이 강하기 때문에 GAN에 관심이 있는 초급 연구자나, 딥러닝 개발자라면 이 책으로 시작해서 TF를 병행해서 배워본다면 좋을 듯 싶다. 연구자라면 어짜피 둘 다 해야 된는데 TF보다 파이토치 쪽 자료를 먼저 해보는걸 추천한다.

수식 표현이 맘에 든다

Written on March 25, 2021